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Scaling laws and vortex profiles in two-dimensional decaying turbulence
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1CEA/DAPNIA/SAp L’Orme des Merisiers, 709, F-91191 Gif sur Yvette, France

2Laboratoire de Physique Quantique, UMR5626 du CNRS, Universite´ Paul Sabatier, F-31062 Toulouse Cedex 4, France
3Observatoire Midi-Pyre´nées, UMR 5572 du CNRS, 14 av. E. Belin, F-31400 Toulouse, France

~Received 30 March 2000; published 17 May 2001!

We use high resolution numerical simulations over several hundred of turnover times to study the influence
of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when
the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevaleet al.,
Phys. Rev. Lett.66, 2735~1991!, and it is observed that viscous effects spoil this scaling regime. The exponent
controlling the decay of the number of vortices shows some trends towardj51, in agreement with a recent
theory based on the Kirchhoff model@C. Sire and P. H. Chavanis, Phys. Rev. E61, 6644~2000!#. In terms of
scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribu-
tion.
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In recent years, two-dimensional turbulence has recei
rather large interest because of its applications in astrop
ics and geophysics and its relative accessibility to numer
simulations with respect to fully developed thre
dimensional turbulence. Two-dimensional flows are char
terized by the presence of coherent structures~the vortices!
which dominate the dynamics. The relaxation of tw
dimensional~2D! decaying turbulence is a three-stage p
cess: during an initial transient period, the fluid organiz
itself from random fluctuations and a population of coher
vortices emerges. Then, when two like-sign vortices co
into contact they merge and form a bigger structure. As ti
goes on, the vortex number decreases and their average
increases, in a process reminiscent of a coarsening s
Finally, when only one dipole is left, it decays diffusive
due to inherent viscosity.

Two types of studies have been conducted to characte
this relaxation process: some have focused on the pre
structure of the vortices~vorticity profiles,v-c relationships,
etc.!, while others described how the average vortex prop
ties ~typical radius, core vorticity, vortex number, etc!
evolve with time. There was some attempt to predict the fi
state~the dipole! in terms of statistical mechanics of the 2
Euler equation@1#. It is found that a prediction from the
initial condition leads to incorrect results due to the effect
viscosity which dissipates the high order moments of
vorticity during the long evolution of the flow towards th
state. However, if the constants of the motion are evalua
at later times~i.e., before the last mergings! the prediction
improves@2#. This implies that the statistical theory cann
predict the final state of a long viscous evolution but is like
to describe correctly the structure of a vortex that forms a
a rapid merging. It was therefore suggested that the isol
vortices of 2D turbulence are sort of local equilibrium sta
or ‘‘maximum entropy bubbles’’@3#.

Other authors have chosen to disregard the precise s
ture of the vortices in order to study how the typical char
teristics of the flow evolve with time. In such experimen
and numerical simulations, it is found that the vortex dens
n, their average radiusa, and their typical core vorticityv
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seem to follow power laws. Two different scenarios ha
been proposed. In the first one, known as the Batch
theory @4#, the assumption of a unique invariant~the energy
E;nv2a4), and the occurrence of a unique relevant tim
scalev21;t implies that the number of vorticesn decays as
n;t2j, with j52. This theory also implies the occurrenc
of a unique length scale, the typical distance between vo
ces n21/2, of the same order of magnitude as their typic
radiusa. Hence, the total area occupied by the vorticesna2,
or alternatively the KurtosisK;(na2)21, remains constant
implying a;t, while the enstrophyZ;nv2a2 decays like
;t22. However, hyperviscous simulations@5# and experi-
ments@6# suggest a different scenario in which the typic
core vorticity v is an additional invariant. Assumingn
;t2j and the energy conservation such thatna4 is now con-
stant, the scaling theory consistent with this scenario@7#
leads to the slow decrease of the total area occupied by
vorticesna2;t2j/2 ~or a;tj/4). The enstrophy now decay
asZ;t2j/2 while the Kurtosis increases asK;tj/2. The oc-
currence of an extra dimensionless relevant parameterna2

prevents the determination ofj from purely dimensional
grounds as was done within Batchelor theory.

From the numerical and experimental side, the situatio
rather confusing. Matthaeuset al. @8# performed a very long
direct numerical simulation~DNS! of the Navier-Stokes
equation and found that the enstrophy decays approxima
like t21. More recently, other DNS at very large resolutio
@9# produced a similar decay rateZ;t20.8. By contrast, in
numerical simulations using hyperviscosity~HDNS! @10# the
enstrophy decays likeZ;t20.3. These hyperviscous simula
tions show an overall agreement with the second scen
with an exponentj;0.75. Recent simulations with very hig
resolution agree with these results@11#.

In a first series of experiments for which 3D effects we
not fully controlled, Cardosoet al. @12# obtained scaling
laws compatible with the first scenario~roughly conserved
vortex area coverage!, but withj'0.44 instead ofj52. In a
second series of experiments with stratification@6#, the same
group obtained scaling laws in favor of the second scen
©2001 The American Physical Society01-1
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with j'0.7. In both cases, dissipation is provided not via
standard viscosity, but mainly via friction at the bottom
the experimental apparatus. A simple rescaling, howe
can make the experimental system equivalent to a real
system, with a time dependent viscosity@6#.

Theoretical attempts have been made to understand
clarify the decay process. Among them, simple models
scribing vortex aggregation process have used point vort
following a Kirchhoff-Hamilton dynamics and merging vi
empirical rules derived from imposed conservation laws. T
model corresponding to the second scenario with cons
energy and core vorticity was first investigated in Ref.@10#,
leading toj;0.75 @10,13#, in agreement with HDNS and
experiments. Recently, the same model was investigated
ing a renormalization group procedure which allows
much larger simulation times~three more decades in time!
@14#. The true scaling regime is only obtained for times mu
larger than previous simulation or experimental times, a
the asymptotic decay exponent is found to bej'1. Interest-
ingly, in the time range comparable to that of HDNS a
experiments, the functionn(t) displays a pseudoscalin
range with an effective exponentj.0.7. An effective three-
body theory shows that the decay of the total area occu
by vortices results in a situation where mergings occur p
cipally via three-body collisions involving vortices of differ
ent signs. A kinetic theory based on these three-body p
cesses leads toj51, in agreement with the simulation
However, since the conservation laws are built in the mo
a priori, there is a definite need for more precise compa
sons with DNS.

Motivated by this observation, we have undertaken
merical simulations of 2D turbulence at high resolution, u
ing both normal and hyperviscosity. A dissipation propo
tional toD4 was used for hyperviscous simulations. The g
of these simulations was twofold: first, determine which
the two scenarios is more appropriate to describe the de
and whether there is an influence of the numerical sche
used to dissipate energy; second, determine whether the
an asymptotic transition between the valuej.0.7 usually
reported, and a valuej'1 predicted by the Kirchhoff model
or any other value. It is then necessary to consider a la
number of initial vortices, so that the decay of their numb
occurs over several decades of time. Both viscous and
perviscous simulations were performed with a pseudosp
tral code with periodic boundary conditions. We chose
resolution so that the typical size of initial vortices was o
side the dissipative range. We used a 20482 grid for viscous
simulations and a 10242 grid for hyperviscous ones. A ran
dom vorticity field was introduced as initial conditions. Th
energy spectrum corresponding to this initial field is given
E(k)5k30/(k1k0)60. Most of the energy is concentrated
the wave numberk05100. This corresponds to a situatio
with approximately 10 000 vortices randomly localized. T
identification of the vortices is based on the numerical vor
selection procedure defined by McWilliams@5#. The simula-
tions were stopped before the number of vortices became
small or their typical size too large~more than 1/50 of the
box size! in order to prevent finite size effects due to t
periodicity of the domain.
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A good summary of the different scaling laws detected
our simulation is provided by Fig. 1. The results of the sim
lation with hyperviscosity mostly confirm the previous n
merical simulations performed over shorter time scales. T
number of vortices decays liken;t20.67 over two decades in
time, while the average vortex radius and the Kurtosis
crease likea;t0.15 andK;t0.30, respectively. The enstroph
decays steadily over the simulation likeZ;t20.40, while the
energy remains almost constant, especially at the later sta
Finally, the maximum of vorticity is almost conserved, d
caying approximately liket20.12 in a first stage, even slowe
~like t20.06) in the late stage of the simulation. These la
scalings are only approximate, since we did observe str
local increase of the maximum of vorticity, which we ass
ciate with strong steepening of the local vorticity profi
within a few isolated vortices. This is probably an artifact
the hyperviscosity, as was previously reported. Overall, th
results are compatible with the second scenario withj'0.7.

When normal viscosity is adopted instead of hypervisc
ity, the behavior changes dramatically. Two different r
gimes can be clearly distinguished: in the first one, betw
t50 andt'1 ~or equivalently until the total number of vor
tices has decayed by one order of magnitude!, a clean power
law n;t20.77 can be observed for the total number of vor
ces, which is close to that obtained with hyperviscous co
putations. There is also a rather clean scaling lawZ;t21.3

for the enstrophy within vortices decaying much steeply th
in the hyperviscous computations. For any other quantitie
monotonic but nonscaling behavior is observed, with a
crease of the vorticity maximum and of the energy, and
slow increase of the average radius and of the Kurtosis
the second regime (t*1), rather clean scaling laws for mos
quantities suddenly emerge, and become markedly diffe
from the corresponding hyperviscous ones. The numbe
vortices decays liken;t21.2 and the average radius in
creases likea;t0.50, resulting in an almost constant vorte
area coverage and Kurtosis. This regime cannot, howeve
described by the Batchelor theory, sincej.1.2 instead of
j52 and, in addition,v;t20.6 andZ;t21.3. To test further
the observed discrepancy, we have also performed comp

FIG. 1. Evolution of the number of vortices and their avera
radius for the three simulations (d and 2, DNS; 1 and 2 2,
HDNS; L and2•2, subgrid scale model!.
1-2
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tions using a turbulent model based on the rapid distor
theory ~RDT! and described in Ref.@15#. The RDT model
presumably describes the dynamics in the inviscid limit. T
different scaling regimes are observed: in the early stag
the simulation the Kurtosis remains almost constant like
the Batchelor theory but the vortex density decays with
exponentj;0.9 instead ofj52. At later times, the Kurtosis
increases likeK;t0.3, v becomes nearly constant, and w
observe scaling laws compatible with the second scen
with j;0.8. During all the course of the simulation, th
energy is nearly constant, like in the hyperviscous case.

Since all these results were obtained using the same in
conditions, they show that the vortex statistics is stron
influenced by the dissipative process acting at small sca
This influence has been noted before: for example, Bart
and Warn@16# noticed that dissipation affects both the se
similar properties of the one-point vorticity density, and t
behavior of high order moments. Large scale dissipation~via
a drag force! also influences the scaling behavior of the e
strophy cascade@17#. In the present case, the ‘‘absolute
scaling law exponents, obtained when the quantities are
malized with large scale quantities such as the initial ene
and the size of the box, are not universal. A natural origin
this difference could be the theoretical invariants, which m
or may not be conserved~or even decay in a different way!
depending on the viscosity scheme used. A good examp
the maximum vorticity. If this hypothesis holds, we shou
be able to detect a possible universality class~independent of
dissipation! of scaling behaviors via an appropriate ‘‘local
~in time! rescaling of the quantities using the theoretical
variants~in the inviscid limit! of the scaling theory. In the
Kirchhoff model, the natural unit of time is the ‘‘average
vorticity of a vortex defined asv̄5AKZ whereK andZ are
the kurtosis and enstrophy of the vortices (v̄ is constant in
the standard scaling theory!. The natural unit of length is the
integral scalel5v̄/AE built with v̄ and the energyE. The
scaling laws obtained in these units are reported in Fig
We now obtain a much better agreement between the hy
viscous and the RDT computations, where the scaling la

FIG. 2. Same as Fig. 1 when the number of vortices, their
dius, and the time have been rescaled appropriately.
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seem to be compatible with the scaling scenario withj
;0.6. The two regimes of the viscous simulation seem
collapse, apart from a small transition zone, into a sin
regime where v/v̄;(v̄t)0, l2n(t);(v̄t)20.6, a/l
;(v̄t)0.15 and Z/v̄2;K21;(v̄t)20.33. We have checked
that another choice of local units~e.g., a time scale defined a
the square root of the enstrophy of the vortices! does not lead
to such a good overlap. This is a clear indication that
Kirchhoff theory is relevant in the dynamics of decayin
turbulence.

As a further check of this, we have undertaken clo
comparisons with the Kirchhoff model. The scaling laws o
tained in local units are reminiscent of the early stage of
Kirchhoff simulation. To test whether these scaling law
steepen into a regime in whichj51, one needs to continu
the simulations over one or two more decades in time, wh
would represent several months of continuous integration
ing our numerical resources. This makes longer integrati
of the viscous or hyperviscous case impossible. However
the RDT case, we tried to use the flexibility of the subg
scale model to move the large scale–small scale cutoff
wards larger scales~following the behavior of the integra
scale!, thereby allowing a gain of computational time fro
10 to 100. We started the simulation with the vorticity fie
from the DNS att50.3 when the energy is small enough
the higher wave number. The use of a coarser grid induc
small loss of enstrophy and Kurtosis via the filtering proc
dure used to change the cut-off scale in our model. We
served that this change of cutoff produces an artificial, c
off dependent, new scaling regime in‘‘absolute’’ scalin
coordinates but a ‘‘universal’’ scaling regime in ‘‘local’
scaling coordinates related to vortices quantities. This u
versal regime is shown in Fig. 3 forn(t) and clearly suggests

-
FIG. 3. Long-time evolution of the rescaled vortex density o

tained using RDT simulations. In the top curve the discontinu
arising from a change of subgrid~arrow! has been smoothed ou
The best fits to the functional formn(t)5n0 /(11t/t0)j are dis-
played. The same data are plotted as a function oft1t0 in the top
inset. The effective exponents obtained show some trends tow
the asymptotic Kirchhoff model valuej'1 @14#. For short times,
coinciding with times before the change of subgrid, the data ar
agreement with the best available Kirchhoff modelpolydisperse
simulations@10,13# ~bottom inset!.
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a local exponentj effectively increasing with time. The ex
trapolated value forj is j;0.79 andj;0.87 when the arti-
ficial discontinuity due to the change in resolution has be
smoothed out~by multiplying the curve after the subgri
change by a factor;0.86).

Our results therefore support the validity of a univer
self-similar evolution of the vortices for inviscid, or near
inviscid decaying turbulence. This self-similar scenario a

FIG. 4. Average vortex profile fitted by a function similar to
Fermi-Dirac distribution~solid line!. We have also indicated the fi
by a Gaussian distribution~dashed-dotted!.
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pears universal when appropriate local units are conside
and a single exponent in the rangej50.8;0.9 is found,
compatible with that of the Kirchhoff model. Finally, viscou
effects tend to favor the conservation of the vortex cover
areana2 and modify the scaling exponents without, how
ever, leading to the Batchelor model. We have also fou
that the vortices present a universal profile when the vortic
is normalized by the central vorticity and the distance by
typical vortex radius defined by the conditionv(a)
5v(0)/2. This profile is represented in Fig. 4 and has be
obtained by averaging over;30 vortices at different times in
the RDT simulation. The error bars indicate to which exte
this profile can be considered as ‘‘universal.’’ As time go
on, these bars become smaller, showing a trend towar
self-similar evolution. We observe that the functionv
5s0 /(11lear 2

) similar to a Fermi-Dirac distribution pro
vides a very good fit to this profile, while the Gaussian d
tribution is less accurate~but has only one fitting parameter!.
In the statistical theory of 2D turbulence, the Fermi-Dir
distribution maximizes the mixing entropy introduced b
Ref. @1# at fixed circulation and angular momentum~the en-
ergy constraint is not very stringent for a single mergi
because energy is a nonlocal quantity which can be redis
uted among the other vortices!. The Fermi-Dirac distribution
is also the equilibrium solution of a new kinetic equatio
derived by Chavanis using a quasilinear theory of the
Euler equation@18#.
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