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We use high resolution numerical simulations over several hundred of turnover times to study the influence
of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when
the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Caghevale
Phys. Rev. Lett66, 2735(1991), and it is observed that viscous effects spoil this scaling regime. The exponent
controlling the decay of the number of vortices shows some trends togwaldd in agreement with a recent
theory based on the Kirchhoff modeC. Sire and P. H. Chavanis, Phys. Rev6E 6644(2000]. In terms of
scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribu-
tion.
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In recent years, two-dimensional turbulence has receivedeem to follow power laws. Two different scenarios have
rather large interest because of its applications in astrophy$een proposed. In the first one, known as the Batchelor
ics and geophysics and its relative accessibility to numericatheory[4], the assumption of a unique invariaiiie energy
simulations with respect to fully developed three- E~nw?a*), and the occurrence of a unique relevant time
dimensional turbulence. Two-dimensional flows are characscalew ™ *~t implies that the number of vorticesdecays as
terized by the presence of coherent structuthe vortices  n~t~¢, with £=2. This theory also implies the occurrence
which dominate the dynamics. The relaxation of two-of a unique length scale, the typical distance between vorti-
dimensional(2D) decaying turbulence is a three-stage pro-cesn='2, of the same order of magnitude as their typical
cess: during an initial transient period, the fluid organizesadiusa. Hence, the total area occupied by the vortineg,
itsel_f from random fluctuations and a _popu_lation of coherent,, alternatively the Kurtosi&~ (na?) 1, remains constant,
vortices emerges. Then, when two I_|ke-5|gn vortices COM&mplying a~t, while the enstrophyZ~nw?a? decays like
into contact they merge and form a bigger structure. As time_,-2 However, hyperviscous simulatiori§] and experi-

goes on, th? vortex number dgg:reases and their average s %nts[G] suggest a different scenario in which the typical
increases, in a process reminiscent of a coarsening stage

Finally, when only one dipole is left, it decays diffusively cor_eg vorticity w IS an addltloqal Invariant _Assummg

due to inherent viscosity. ~t~¢and the energy conservatl_on such_ihafl is now con-
Two types of studies have been conducted to characteriza@nt: the scaling theory consistent with this scengrip

this relaxation process: some have focused on the precidg2ds t© thf sIE)V\//Zdecreasemof the total area occupied by the

structure of the vorticeg/orticity profiles, - relationships, ~ Vorticesna~t 2 (or a~t§_)._The enstrophy now decays

etc), while others described how the average vortex properaSZ~t~¢? while the Kurtosis increases #s~t2. The oc-

ties (typical radius, core vorticity, vortex number, étc. currence of an extra dimensionless relevant paranteaér

evolve with time. There was some attempt to predict the finaprevents the determination @f from purely dimensional

state(the dipole in terms of statistical mechanics of the 2D grounds as was done within Batchelor theory.

Euler equation1]. It is found that a prediction from the From the numerical and experimental side, the situation is

initial condition leads to incorrect results due to the effect ofrather confusing. Matthaew al. [8] performed a very long

viscosity which dissipates the high order moments of thedirect numerical simulationDNS) of the Navier-Stokes

vorticity during the long evolution of the flow towards that equation and found that the enstrophy decays approximately

state. However, if the constants of the motion are evaluatelike t~. More recently, other DNS at very large resolution

at later times(i.e., before the last merging¢he prediction [9] produced a similar decay ra@~t~ %% By contrast, in

improves[2]. This implies that the statistical theory cannot numerical simulations using hyperviscosityDNS) [10] the

predict the final state of a long viscous evolution but is likely enstrophy decays liké~t~ %2 These hyperviscous simula-

to describe correctly the structure of a vortex that forms aftetions show an overall agreement with the second scenario

a rapid merging. It was therefore suggested that the isolatedith an exponeng~0.75. Recent simulations with very high

vortices of 2D turbulence are sort of local equilibrium statesresolution agree with these resutsl].

or “maximum entropy bubbles’3]. In a first series of experiments for which 3D effects were
Other authors have chosen to disregard the precise strunet fully controlled, Cardoscet al. [12] obtained scaling

ture of the vortices in order to study how the typical characdaws compatible with the first scenariooughly conserved

teristics of the flow evolve with time. In such experimentsvortex area coveragebut with é~0.44 instead of=2. In a

and numerical simulations, it is found that the vortex densitysecond series of experiments with stratificatiéh the same

n, their average radiug, and their typical core vorticityo group obtained scaling laws in favor of the second scenario
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with ¢~0.7. In both cases, dissipation is provided not via a 10000F 7 T T T 11.00
standard viscosity, but mainly via friction at the bottom of ' p ]
the experimental apparatus. A simple rescaling, however
can make the experimental system equivalent to a real 2L«
system, with a time dependent viscosi6j.
Theoretical attempts have been made to understand ang
clarify the decay process. Among them, simple models de-5
scribing vortex aggregation process have used point vortice'g
following a Kirchhoff-Hamilton dynamics and merging via E 100}
empirical rules derived from imposed conservation laws. The= :
model corresponding to the second scenario with constan
energy and core vorticity was first investigated in H&D],

rtice

1000

o

Average radius of vortices

leading to£~0.75[10,13, in agreement with HDNS and 10 oot
experiments. Recently, the same model was investigated us 0.1 1.0 10.0
ing a renormalization group procedure which allows for time

qZChTLargt]er Slmul!atlon t_meﬁhreel mg:e. deg?def in time h FIG. 1. Evolution of the number of vortices and their average
[14]. The true scaling regime is only obtained for times muc adius for the three simulation®( and —, DNS; + and — —,

larger than p_revious simulation_or experimental times, an DNS: ¢ and— - —, subgrid scale modgl
the asymptotic decay exponent is found to&sel. Interest-
ingly, in the time range comparable to that of HDNS and A good summary of the different scaling laws detected in
experiments, the functiom(t) displays a pseudoscaling our simulation is provided by Fig. 1. The results of the simu-
range with an effective exponeéit=0.7. An effective three- lation with hyperviscosity mostly confirm the previous nu-
body theory shows that the decay of the total area occupietherical simulations performed over shorter time scales. The
by vortices results in a situation where mergings occur prinnumber of vortices decays like~t~ %" over two decades in
cipally via three-body collisions involving vortices of differ- time, while the average vortex radius and the Kurtosis in-
ent signs. A kinetic theory based on these three-body procrease likea~t%1°andK ~t%3C respectively. The enstrophy
cesses leads tg=1, in agreement with the simulations. decays steadily over the simulation like-t~%4% while the
However, since the conservation laws are built in the modeénergy remains almost constant, especially at the later stages.
a priori, there is a definite need for more precise compariFinally, the maximum of vorticity is almost conserved, de-
sons with DNS. caying approximately likeé ~%2in a first stage, even slower
Motivated by this observation, we have undertaken nu-like t=%%) in the late stage of the simulation. These last
merical simulations of 2D turbulence at high resolution, us-scalings are only approximate, since we did observe strong
ing both normal and hyperviscosity. A dissipation propor-local increase of the maximum of vorticity, which we asso-
tional toA“ was used for hyperviscous simulations. The goalciate with strong steepening of the local vorticity profile
of these simulations was twofold: first, determine which ofwithin a few isolated vortices. This is probably an artifact of
the two scenarios is more appropriate to describe the decaghe hyperviscosity, as was previously reported. Overall, these
and whether there is an influence of the numerical schemeesults are compatible with the second scenario #i0.7.
used to dissipate energy; second, determine whether there is When normal viscosity is adopted instead of hyperviscos-
an asymptotic transition between the valgre0.7 usually ity, the behavior changes dramatically. Two different re-
reported, and a valug~1 predicted by the Kirchhoff model, gimes can be clearly distinguished: in the first one, between
or any other value. It is then necessary to consider a large=0 andt~1 (or equivalently until the total number of vor-
number of initial vortices, so that the decay of their numbertices has decayed by one order of magnijudeclean power
occurs over several decades of time. Both viscous and hyaw n~t~ %77 can be observed for the total number of vorti-
perviscous simulations were performed with a pseudospeces, which is close to that obtained with hyperviscous com-
tral code with periodic boundary conditions. We chose theputations. There is also a rather clean scaling Fawt 13
resolution so that the typical size of initial vortices was out-for the enstrophy within vortices decaying much steeply than
side the dissipative range. We used a 20g8d for viscous  in the hyperviscous computations. For any other quantities, a
simulations and a 1034grid for hyperviscous ones. A ran- monotonic but nonscaling behavior is observed, with a de-
dom vorticity field was introduced as initial conditions. The crease of the vorticity maximum and of the energy, and a
energy spectrum corresponding to this initial field is given byslow increase of the average radius and of the Kurtosis. In
E(k) =k3%(k+ko)®°. Most of the energy is concentrated at the second regimet£ 1), rather clean scaling laws for most
the wave numbek,=100. This corresponds to a situation quantities suddenly emerge, and become markedly different
with approximately 10 000 vortices randomly localized. Thefrom the corresponding hyperviscous ones. The number of
identification of the vortices is based on the numerical vortewortices decays liken~t~ 12 and the average radius in-
selection procedure defined by McWilliarf§]. The simula-  creases likea~t%%° resulting in an almost constant vortex
tions were stopped before the number of vortices became taarea coverage and Kurtosis. This regime cannot, however, be
small or their typical size too largemore than 1/50 of the described by the Batchelor theory, singe:-1.2 instead of
box sizg in order to prevent finite size effects due to the ¢=2 and, in additionw~t~%®andz~t~13 To test further
periodicity of the domain. the observed discrepancy, we have also performed computa-
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FIG. 3. Long-time evolution of the rescaled vortex density ob-
FIG. 2. Same as Fig. 1 when the number of vortices, their ratgined using RDT simulations. In the top curve the discontinuity
dius, and the time have been rescaled appropriately. arising from a change of subgriérrow) has been smoothed out.
The best fits to the functional form(t)=ny/(1+t/ty)¢ are dis-

tions using a turbulent model based on the rapid distortiofpl2yed: The same data are plotted as a functiontdy, in the top

theory (RDT) and described in Ref15]. The RDT model inset. The eff_ectl\_/e exponents obtained show some trend_s towards
. C o TR the asymptotic Kirchhoff model valué~1 [14]. For short times,

presumably describes the dynamics in the inviscid limit. Two_ >~ . . .

different scaling regimes are observed: in the early stage o(afO'nc'd'ng with times before the change of sbgrid, the data are in

. . . . ’ .= . agreement with the best available Kirchhoff mogllydisperse
the simulation the Kurtosis remains almost constant like INSimulations[10,13 (bottom inseX
the Batchelor theory but the vortex density decays with an '

exponenig~0.9 instead of=2. At later times, the Kurtosis seem to be compatible with the scaling scenario with
increases likeK~t°% » becomes nearly constant, and we —0.6. The two regimes of the viscous simulation seem to
observe scaling laws compatible with the second scenarigollapse, apart from a small transition zone, into a single
with §~.0.8. Dluring all th(T.kco.urSﬁ orf] the §imu|ation, the regime where w/5~($t)° )\Zn(t)~(5t)‘°-6 a/\
energy is nearly constant, like in the hyperviscous case. — o5 o = s ’

(wt) and Z/w“~K™ *~(wt) . We have checked

Since all these results were obtained using the same initia her choi flocal uni : le defined
conditions, they show that the vortex statistics is stronglylnat another choice of local unife.g., a time scale defined as

influenced by the dissipative process acting at small scaleéhe square root of the enstrophy of the vortjagses not lead

This influence has been noted before: for example, Bartell 0 such a good overlap. This is a clear indication that the

and Warn[16] noticed that dissipation affects both the self- wghlhoff theory is relevant in the dynamics of decaying
similar properties of the one-point vorticity density, and thetUrbulence.

behavior of high order moments. Large scale dissipatitm As a further. ﬁhﬁCk .Of rmlsff wedh?vehunderlyakeln clost;ar
a drag force also influences the scaling behavior of the en-comparisons with the Kirchhoff model. The scaling laws ob-

strophy cascadél7]. In the present case, the “absolute” tained in local units are reminiscent of the early stage of the

scaling law exponents, obtained when the quantities are no;glrchhoff simulation. To test whether these scaling laws

malized with large scale quantities such as the initial energ rt]eepen Imt_o aregime in which=1, on: negds to _contlnuhg h
and the size of the box, are not universal. A natural origin tg'€ Simulations over one or two more decades in time, whic

this difference could be the theoretical invariants, which ma)2"’OUId represent several months _Of continuous Iintegration us-
or may not be conserve@r even decay in a different way ing our numerical resources. This makes longer integrations
depending on the viscosity scheme used. A good example [ the viscous or hyperviscous case impossible. However, in
the maximum vorticity. If this hypothesis holds, we should € RDT case, we tried to use the flexibility of the subgrid

be able to detect a possible universality cldsdependent of Scale model to move the large scale—small scale cutoff to-
dissipation of scaling behaviors via an appropriate “local” wards larger scaleéf_ollowmg_the behavior qf the _mtegral
(in time) rescaling of the quantities using the theoretical in_scale), thereby allowing a gan of _comp_utatlonal time fr_om
variants(in the inviscid limit of the scaling theory. In the 10 to 100. We started the simulation with the vorticity field

Kirchhoff model, the natural unit of time is the “average” [ToM the DNS at=0.3 when the energy is small enough at

- i — == the higher wave number. The use of a coarser grid induces a
vorticity of a vortex defined as=yKZ whereK andZ are small loss of enstrophy and Kurtosis via the filtering proce-

the kurtosis and enstrophy of the vortices {s constant in  qyre used to change the cut-off scale in our model. We ob-
the standard scaling thegryrhe natural unit of length is the  served that this change of cutoff produces an artificial, cut-
integral scale\ = w/+\/E built with w and the energ§. The  off dependent, new scaling regime in“absolute” scaling
scaling laws obtained in these units are reported in Fig. 2coordinates but a “universal” scaling regime in “local”
We now obtain a much better agreement between the hypescaling coordinates related to vortices quantities. This uni-
viscous and the RDT computations, where the scaling lawsersal regime is shown in Fig. 3 foi(t) and clearly suggests

065301-3



LAVAL, CHAVANIS, DUBRULLE, AND SIRE

1.0]
0.8}

0.6

<w/w>

0.4

0.2

0.0
0.0

0.5

FIG. 4. Average vortex profile fitted by a function similar to a
Fermi-Dirac distribution(solid line). We have also indicated the fit
by a Gaussian distributiofdashed-dotted

a local exponené effectively increasing with time. The ex-
trapolated value fo€ is £~0.79 andé~0.87 when the arti-
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pears universal when appropriate local units are considered,
and a single exponent in the range-0.8~0.9 is found,
compatible with that of the Kirchhoff model. Finally, viscous
effects tend to favor the conservation of the vortex coverage
areana® and modify the scaling exponents without, how-
ever, leading to the Batchelor model. We have also found
that the vortices present a universal profile when the vorticity
is normalized by the central vorticity and the distance by the
typical vortex radius defined by the conditiom(a)

= w(0)/2. This profile is represented in Fig. 4 and has been
obtained by averaging over 30 vortices at different times in
the RDT simulation. The error bars indicate to which extent
this profile can be considered as “universal.” As time goes
on, these bars become smaller, showing a trend towards a
self-similar evolution. We observe that the functian
zaol(1+)\e“r2) similar to a Fermi-Dirac distribution pro-
vides a very good fit to this profile, while the Gaussian dis-
tribution is less accurat@ut has only one fitting paramejer

In the statistical theory of 2D turbulence, the Fermi-Dirac
distribution maximizes the mixing entropy introduced by
Ref.[1] at fixed circulation and angular momentuthe en-

ficial discontinuity due to the change in resolution has beerergy constraint is not very stringent for a single merging

smoothed outlby multiplying the curve after the subgrid
change by a factor-0.86).

because energy is a nonlocal quantity which can be redistrib-
uted among the other vorticeS he Fermi-Dirac distribution

Our results therefore support the validity of a universalis also the equilibrium solution of a new kinetic equation

self-similar evolution of the vortices for inviscid, or nearly

derived by Chavanis using a quasilinear theory of the 2D

inviscid decaying turbulence. This self-similar scenario ap-Euler equatiorj18].
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